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1. Vector-boson scattering and EWSB
2. Higgs effective field theory

3. WW scattering at the LHC

Apologies: Not a comprehensive analysis/discussion of the topic!



Vector-boson scattering and EWSB

m Recent discovery of bosonic resonance with mass 125-126 GeV
— consistent with SM Higgs

m Still large uncertainty on its properties and details of EWSB
» More information from improved rate/BR measurements
» Direct test of role in EWSB through high-energy V'V scattering

Example: Wﬂ'Wi" — Wﬂ'Wﬂ'
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Unitarity and EWSB

Possible new physics effects:
e Extended Higgs sectors (2 Higgs doublets, SUSY, etc.)
e Composite Higgs with energy-dependent form factors
e Higgs with non-perturbative self-coupling
e Additional (broad) resonances

e Higgsless models (125-GeV scalar is dilaton)

Some models disfavored by electroweak precision and LHC data

— Independent check through V'V scattering desirable
VV =WTWT, Wtw—, W*Z, ZZ




Strong dynamics

Rationale:

e Known mechanism in other cases (QCD, superconductivity, ...

e Electroweak scale is natural (log. gauge coupling running)
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e Prediction: Higgs-like particle is composite scalar

Constraints:

e Model-building for quark/lepton masses
e EW precision data / FCNCs

e Direct searches for light pseudo-Goldstone bosons




e H as PGB

* Similar to dilaton, but not the same. Still predictive

* Precision probes above still as relevant.
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Leading dim-6 Ops. The
restricted form of this

show the scheme has predictive
power




Assumptions and program:

* No non-SM fields needed below compositeness scale A

* Form factors admit Taylor expansion

* “Effective” lagrangian from SM fields only, with Poincare and gauge invariance
* Include non-renormalizable operators, suppressed by A

® Form factor Taylor expansion = operator derivatives expansion

® Study constraints from OTHER effects of same operators
® Graduate with PhD thesis

Example: Ch
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Effective field theory

m Modified (energy-dependent) couplings
a q2 _4
e.g. gUHWW) = g(1+ 5+ b+ 0(A )

m (Composite) Higgs boson does not achieve full VV unitarization
— New resonances with m ~ A > 1 TeV

Analysis of V'V scattering:
e Measurement of role of Higgs boson in unitarization

e Test of modified couplings (in particular ¢2 piece)

e Search for extra resonances
(e. g. additional Higgs bosons, techni-vector mesons, ...)




W W scattering at the LHC

Production at hadron colliders:

1. Apply smart cuts on vector-boson
fusion (VBF) topology:

— two jets with large rapidity gap
2. Count events or analyze myy,

Problem: typical event rate ~ 0.1-0.5 fb at /s = 14 TeV
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Matrix Element Method

Matrix Element Method (MEM): Kondo '88,'91
Dalitz, Goldstein '92
D@ collaboration '99,'04

Likelihood that measured event, p;’is, agrees with theoretical matrix
element M,:
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(4+) Uses complete event information
(+) Effective for small event samples
(4+) Works well also with invisible final-state objects




Strongly Interaction Light Higgs (SILH)

Class of models with strong dynamics at A~4xnf > 1 TeV
and light composite Higgs boson

Guidice, Grojean, Pomarol, Ratazzi '07
(here mpy = 125 GeV)

m Higgs couplings to SM particles reduced by 1/\/1 —cv?/f2, ¢~ O(1)

m Full unitarization for My — oo by heavy resonances (m ~ few x f)
— May be beyond reach of LHC

Consider process: pp — j]W+W+ — jj£+€/+y€y£, (ﬁ(/) — e)lUJ)
(—) Relatively low event rate
(—) Final state cannot be reconstructed kinematically

(+) Clean final state (no jet ambiguity)
(+) Low background




MEM: 100 events at /s = 14 TeV for pp — jiWTWT — jie 0/,

Traditional analysis: my, distribution, 2 bins for my, € [0, 1000] GeV,
(results compatible with Ballestrero, Franzosi, Maina '11)
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Two Higgs Doublet Model (THDM)

Higgs-like particle with m = 125 GeV has been observed

— Could be one of two CP-even Higgs states h° and HO
(myo = 125 GeV)

— Both needed for complete unitarization

Mixing angles:
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/2 100 events
Vs =14 TeV
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WW scattering and MEM

Consider process: pp — jiWTWT — jietetow, (V) =e,pn)
(—) Relatively low event rate
(—) Final state cannot be reconstructed kinematically

(+) Clean final state (no jet ambiguity)
(4+) Low background

Main backgrounds:
m Intrinsic pp — jiWTWT — jitT 0 vwp
(contributions without WjWi" scattering)

mpp — tt — jjﬁ"’é’_ug%/ Doboda et al. '12
(due to wrong charge identification for O(1%) of hard lepton tracks)




Implementation of MEM for W W scattering

Partonic process: q7 — ¢/ gWtTW+ — q/q/€+€/+V£V£/ (¢, = u,d, s, c)

m Analysis at parton-level (jet smearing functions are straightforward
but computing intensive) D® '04, Fiedler et al. '10

m Private code for likelihood weights and cross-section normalization

m MADGRAPH/MADEVENT/MADWEIGHT for cross-checks

m Simulation of “experimental” events with MADEVENT (mj = 125 GeV)

Preselection cuts:

pTe¢>20 GeV  pt;>30 GeV | <25 |nj| <5 (acceptance)

ARjjpje > 0.4 (isolation)
m5, — nj,| > 4 ] > 1 m;, i, > 100 GeV (VBF cuts)
my; > 190 GeV (tf bkgd.)

SM cross-section (y/s =14 TeV): o =0.59 fb
— 100 events with £ ~ 170 fb~1




